
This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view
a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/

Nacho Cabanes
Nacho Iborra

IES San Vicente

Session 4 – Adding sound and texts

Introduction to
Game Programming

http://creativecommons.org/licenses/by-nc-sa/4.0/

Index of contents
1.Introduction...3
2.Adding texts..4

2.1.Create the Font class..4
2.2.Changes in Hardware class..5
2.3.Downloading and installing the font..5
2.4.Testing the font..6

3.Adding sounds..7
3.1.The Audio class...7
3.2.Downloading and adding the audios...9
3.3.Testing the audios...9

4.Drawing in Tao SDL..10
5.To think a little...11

Programming – Introduction to Game Programming 2.

1. Introduction
In this session we are going to add two minor (but important) aspects of the video game,
such as music/sound effects, and texts. What we are going to add is:

• A background music in the title screen, and another one while we are playing the
game

• A sound effect when choosing a character

• Put some texts in the game screen to show player energy and points

Programming – Introduction to Game Programming 3.

2. Adding texts
Texts are a very important component in videogames, since they can show relevant
information, such as instructions of how to play, or scores. If we want to add texts to our
Tao SDL video game, let's assume that we are going to use TTF fonts (the most common
ones). Then, we need to add two libraries to the project: SDL_ttf.dll and libfreetype-6.dll.
Both libraries should be added by now to our project, so we should not have to care about
them.

Besides, we need to add to the project the TTF file(s) of the font(s) that we want to use.
We can find some of them in Windows/Fonts folder (if we are using windows) or in some
web pages such as www.fontsquirrel.com. You will be provided with a specific font for the
video game.

2.1. Create the Font class

As we did for images, we are going to create our own Font class to deal with all the SDL
methods required to load and draw texts from a given font. This class would have an IntPtr
attribute to store the font, and a constructor to load the font from the corresponding file,
with the desired size.
using System;

using Tao.Sdl;

class Font

{

 IntPtr fontType;

 public Font(string fileName, int fontSize)

 {

 fontType = SdlTtf.TTF_OpenFont(fileName, fontSize);

 if (fontType == IntPtr.Zero)

 {

 Console.WriteLine("Font type not found");

 Environment.Exit(2);

 }

 }

 public IntPtr GetFontType()

 {

 return fontType;

 }

}

Programming – Introduction to Game Programming 4.

http://www.fontsquirrel.com/

2.2. Changes in Hardware class

Next step consists in adding a new method to our Hardware class. We will call it WriteText,
and it will have the following parameters:

• The text to be written

• The coordinates (x, y) where the text must start

• The text color (in RGB components, separately)

• The font to use (a Font object)
public void WriteText(string text, short x, short y, byte r, byte g, byte b,

 Font fontType)

{

 Sdl.SDL_Color color = new Sdl.SDL_Color(r, g, b);

 IntPtr textAsImage = SdlTtf.TTF_RenderText_Solid(fontType.GetFontType(),

 text, color);

 if (textAsImage == IntPtr.Zero)

 Environment.Exit(5);

 Sdl.SDL_Rect src = new Sdl.SDL_Rect(0, 0, screenWidth, screenHeight);

 Sdl.SDL_Rect dest = new Sdl.SDL_Rect(x, y, screenWidth, screenHeight);

 Sdl.SDL_BlitSurface(textAsImage, ref src, screen, ref dest);

}

We are not going to see this method in detail, but it takes the text and generates an image
with it (textAsImage variable). Then it prints it in the specified coordinates. We specify
screenWidth and screenHeight as text width and height because we don't know which
width and height it is going to have. This way, we make sure that the text will be completely
shown in the screen (unless it is bigger than the screen itself).

There is one more change pending in Hardware class. At the end of the constructor, we
must call the TTF_Init method to init the font management.
public Hardware(...)

{

 ...

 SdlTtf.TTF_Init();

}

2.3. Downloading and installing the font

As we said before, you will be provided with a file called “prince_valiant.ttf”. Create a
subfolder called “fonts” in your project, and place this file inside the folder. Remember to
set the “Copy always” property so that this file will be copied to the output folder.

Programming – Introduction to Game Programming 5.

2.4. Testing the font

Let's go to our GameScreen class. We define an attribute of type Font, and initialize it at
the constructor.
class GameScreen: Screen

{

 MainCharacter character;

 int chosenPlayer;

 Font font;

 ...

 public GameScreen(Hardware hardware): base(hardware)

 {

 font = new Font("fonts/prince_valiant.ttf", 20);

 }

Then, add these lines in step #1 of the game loop to draw the “ENERGY” text at the
bottom left corner, in red.
// 1. Draw everything

hardware.ClearScreen();

hardware.DrawSprite(Sprite.SpriteSheet, …);

hardware.WriteText("ENERGY:", 5, 550, 255, 0, 0, font);

hardware.UpdateScreen();

Programming – Introduction to Game Programming 6.

3. Adding sounds
We can also add sound effects and/or background music to our video games. To do this,
we must add SDL_mixer.dll library to our project (you should have done this by now). As
we did for texts, we are going to start by creating our own Audio class to work with, and
use it in our main application.

3.1. The Audio class

Create a class called Audio with two attributes: a list of audios (IntPtr) that will be added to
the project at each moment, and the number of channels that we are going to manage.
using System;

using System.Collections.Generic;

using Tao.Sdl;

class Audio

{

 List<IntPtr> audios;

 int channels;

 public Audio(int freq, int channels, int bytesPerSample)

 {

 this.channels = channels;

 SdlMixer.Mix_OpenAudio(freq, (short)SdlMixer.MIX_DEFAULT_FORMAT,

 channels, bytesPerSample);

 audios = new List<IntPtr>();

 }

}

In the constructor, we specify the audio features: frequency (typically 22050 or 44100),
number of available channels and number of bytes per audio sample (typically 4096).

Then, we are going to add two methods to add WAV files to the list and play them,
respectively:
public bool AddWAV(string fileName)

{

 IntPtr file = SdlMixer.Mix_LoadWAV(fileName);

 if (file == IntPtr.Zero)

 return false;

 audios.Add(file);

 return true;

}

public void PlayWAV(int pos, int channel, int numberOfLoops)

Programming – Introduction to Game Programming 7.

{

 if (pos >= 0 && pos < audios.Count && channel >= 1 && channel <= channels)

 SdlMixer.Mix_PlayChannel(channel, audios[pos], numberOfLoops);

}

Regarding PlayWAV method, it plays the audio at position pos of the list, in the specified
channel (a number between 0 and total number of channels), and the number of times
indicated in the last parameter (-1 to infinite loop, 0 to play it once, 1 to play it twice and so
on).

WAV is a format very easy to deal with. It allows us to determine which channel must be
assigned to each audio. However, we can also play other audio formats, such as OGG,
MID or MP3, but we need to add another less specific methods:
public bool AddMusic(string fileName)

{

 IntPtr file = SdlMixer.Mix_LoadMUS(fileName);

 if (file == IntPtr.Zero)

 return false;

 audios.Add(file);

 return true;

}

public void PlayMusic(int pos, int numberOfLoops)

{

 if (pos >= 0 && pos < audios.Count)

 SdlMixer.Mix_PlayMusic(audios[pos], numberOfLoops);

}

The main difference between these methods and the WAV ones is that with these generic
methods we can't specify the channels for each audio file. We can use them to play
background music, if we want to.

We can also add some methods to stop a sound whenever we want to:
public void StopMusic()

{

 SdlMixer.Mix_HaltMusic();

}

public void StopChannel(int channel)

{

 SdlMixer.Mix_HaltChannel(channel);

}

The first one will be used to stop all the sounds started with PlayMusic method, and the
second one will stop the sound played with PlayWAV method in a given channel.

Programming – Introduction to Game Programming 8.

3.2. Downloading and adding the audios

You will be provided with a set of audio files. Create a folder called “sound” in your project
and copy these files inside. As usual, remember to set the “Copy always” property.

3.3. Testing the audios

Let's go to our WelcomeScreen class. We are going to add a background music to it, It will
start playing as soon as the screen shows, and it will stop playing when we move to next
screen.

First of all, we define an Audio object as an attribute, and initialize it in the constructor,
loading the audio file that we are going to play.
class WelcomeScreen : Screen

{

 bool exit;

 Image imgWelcome;

 Audio audio;

 …

 public WelcomeScreen(Hardware hardware) : base(hardware)

 {

 exit = false;

 audio = new Audio(44100, 2, 4096);

 audio.AddMusic("sound/title.mid");

 ...

Finally, in the Show method, we start playing the audio before the do..while loop, and stop
playing it after the loop. As we have only added one audio file, it will be the first one in the
list (index 0).
audio.PlayMusic(0, -1);

do

{

}

while (!escPressed && !spacePressed);

audio.StopMusic();

Programming – Introduction to Game Programming 9.

4. Drawing in Tao SDL
To finish with this session, we are going to learn some basics about how to draw geometric
figures with Tao SDL. What we are going to do is draw a thin, yellow line at the bottom, to
separate the score text from the scene.

In order to draw these figures, we need to add SDL_gfx.dll library to our project. You can
copy it from the resources of this session, and paste it in the root folder of the project (and
set the “Copy always” property).

With this library, we have some methods available to draw some basic figures, such as
rectangles, circles or polygons, with different colors. For instance, if we want to draw a
line, we can use this method (add it to the Hardware class):
public void DrawLine(short x, short y, short x2, short y2, byte r, byte g,

byte b, byte alpha)

{

 SdlGfx.lineRGBA(screen, x, y, width, height, r, g, b, alpha);

}

The specified parameters are the X,Y coordinates to draw the line (both edges), the color
in RGB format and the alpha element (transparency, going from 0 – completely
transparent), to 255 – completely opaque).

So, if we want to draw a yellow line at the bottom of GameScreen, we can add this line in
step #1 of the game loop:
// 1. Draw everything

hardware.ClearScreen();

hardware.DrawSprite(Sprite.SpriteSheet, ...

hardware.DrawLine(0, 500, 800, 500, 255, 255, 0, 255);

There are some other useful methods within this library, such as rectangleRGBA (to draw
a rectangle, circleRGBA (for circles), filledPolygonRGBA (for polygons in general,
specifying the array of X and Y coordinates)...

The following code draws a yellow rectangle with corners at (0, 500), (800, 500), (0, 520)
and (800, 520). You can use this code instead of previous one if you want a thicker
separation between the texts and the scene:
short[] vx = {100, 300, 300, 100};

short[] vy = {100, 100, 200, 200};

SdlGfx.filledPolygonRGBA(screen, vx, vy, vx.Length, 255, 255, 0, 120);

Programming – Introduction to Game Programming 10.

5. To think a little...
Now it is your turn. What you have to do now is:

• (0,5 points) Add another text in green called “POINTS”, at the bottom right corner
of the game screen. Here we will show the player score in later sessions:

• (1 point) Add a sound effect “sound/fire.wav” to the PlayerSelectScreen class. It will
play everytime we change the currently selected player.

• (0,5 points) Add a background sound (you can choose among “song_a.mid”,
“song_b.mid” and “song_c.mid”) to the GameScreen class. This sound will start
playing before the game loop, and will stop when we exit the loop.

Programming – Introduction to Game Programming 11.

	1. Introduction
	2. Adding texts
	2.1. Create the Font class
	2.2. Changes in Hardware class
	2.3. Downloading and installing the font
	2.4. Testing the font

	3. Adding sounds
	3.1. The Audio class
	3.2. Downloading and adding the audios
	3.3. Testing the audios

	4. Drawing in Tao SDL
	5. To think a little...

